
Collisional Breakup in Coulomb SystemsT.N. Resigno1;2 and C.W. MCurdy1;31Lawrene Berkeley National LaboratoryComputing SienesBerkeley, CA 94720, USA2Lawrene Livermore National LaboratoryPhysis and Advaned TehnologiesLivermore, CA 94551, USA3University of California, DavisDepartment of Applied SieneDavis, CA 95616, USA1 IntrodutionAtomi ollision theorists have struggled to understand the details of thesimplest problem in ollisional ionization - the eletron-impat ionization ofatomi hydrogen - sine the formulation of the problem some forty years agoby Peterkop [1℄ and by Rudge and Seaton [2℄. In fat, it is only within thelast few years that this problem has been redued to \pratial omputation",meaning one has a formalism and the assoiated numerial algorithms thatpermit the alulation, with urrently available omputing apability, of therelevant physial quantities to any auray that an be tested by experi-ment. That fat has been demonstrated, for example, in a series of papers [3{8℄ applying the ideas of exterior omplex saling of eletroni oordinates tothe eletron-impat ionization of the hydrogen atom. Other methods inlud-ing onvergent lose-oupling[9{11℄, the R-matrix pseudostates method[12℄,hyperspherial lose-oupling[13,14℄, and time-dependent lose-oupling[15℄have also been applied to aspets of this problem with great suess. Forthe related problem of double-photoionization of helium, the hyperspherialR-matrix method[16℄ has used with great suess.The entral diÆulty that impeded progress on the problem of three-body breakup in Coulomb systems, partiularly for the ollisional breakup or\e,2e" problem (as opposed to double photoionization), is the umbersomeasymptoti form of the sattering wave funtion that the formal theory of ion-ization imposes. The appropriate boundary ondition for ionization, deduedby Peterkop [1℄ and Rudge and Seaton [2℄, is	+ion(r1; r2) �!�!1 � fi(r̂1; r̂2; �)q i�3�5 expfi[��+ �(r̂1; r̂2; �)� ln(2��)℄g; (1)where fi is the ionization amplitude and the hyperspherial oordinates arede�ned by � = (r21+r22)1=2 with � = tan�1(r1=r2), and � is related to the total



2 T.N. Resigno and C.W. MCurdyenergy by E = �2=2. The most obvious diÆulty in applying this boundaryondition is that the oeÆient �(r̂1; r̂2; �) of the logarithmi phase dependson the distanes and ejetion angles of both eletrons. However, worse yet isthe fat that Eq. (1) is not separable in spherial oordinates, and is thereforemuh more umbersome to apply to numerial alulations whih are perforedone in that oordinate system. As a onsequene, no one has yet appliedEq.(1) to the numerial solution of the Shr�odinger equation for the ionizationproblem.The formal theory of ionization poses another hallenge to omputationas well, and that is that the ordinary expression for evaluating the ampli-tude, starting from the sattering wave funtion that solves the Shr�odingerequation, does not apply, beause de�ned in the usual way it would havean in�nite phase assoiated with integrating an expression with logarithmiphases over an in�nite volume. Instead the amplitude is given by [1,2,17℄f(k1;k2) = �(2�)5=2ei�(k1;k2) ZZ 	+(H �E)�(�k1; z1)�(�k2; z2)dr1dr2(2)with e�etive harges in the one-body Coulomb funtions, �(�k; z) depend-ing on both the energy and diretion of ejetion of eah eletron,z1k1 + z2k2 = 1k1 + 1k2 � 1jk1 � k2j ; (3)and with�(k1;k2) = 2[(z1=k1) ln(k1=�) + (z2=k2) ln(k2=�)℄: (4)Both of these diÆulties were ultimately overome by the suessful meth-ods for treating the eletron-impat ionization problem. The �rst of them, theasymptoti form in Eq.(1), was the entral issue addressed by the ExteriorComplex Saling (ECS) method, whih is the prinipal subjet of this hap-ter. The seond of them, the Coulomb breakup amplitude formula in Eq.(2)and its attendant numerial pathologies, required a reformulation and theobservation that numerial omputations on a �nite volume an be at mosta�eted by a �nite overall phase that leaves physial observables unhanged.2 Exterior Complex Saling - CirumventingAsymptoti Boundary ConditionsThe ECS method owes its origins to the long history of omplex saling meth-ods in atomi and moleular physis, whih in turn is based on a very simpleobservation about the behavior of solutions of the Shr�odinger equation whenviewed as funtions of omplex variables. A purely outgoing wave, exp(ikr),with k > 0, beomes exponentially deaying when the oordinate, r, is saled



Collisional Breakup in Coulomb Systems 3into the upper half omplex plane, exp(ikrei�) ! 0 as r ! 1. The �rststep in the ECS formalism, therefore, is to isolate the outgoing or \satteredwave" portion of the full sattering wave funtion. To that end, we partitionthe full wave funtion into an initial unperturbed state, �0, and a satteredwave, 	s, whih ontains only outgoing waves in all hannels:	 (+) = 	s + �0: (5)For a two-eletron, problem, e.g., eletron-hydrogen atom sattering, �0 anbe written, for singlet (upper sign) or triplet (lower sign) spin oupling,�0 = 1p2k0 (eik0�r1'0(r2)� eik0�r2'0(r1)); (6)where k0 is the inident eletron momentum, and '0 is the initial state ofthe atom. The sattered wave then satis�es the driven Shr�odinger equationfor a partiular initial ondition,(E �H)	s = (H �E)�0: (7)Complex saling redues the Coulomb boundary ondition for breakup,with its ompliated logarithmi phases, to the trivial ondition that 	s(r1; r2)vanish at in�nity. The subtlety in the (e,2e) problem is that we must extratthe physis of breakup from 	s in a region in whih the oordinates on whihit depends are real, so we need to apply the omplex saling transformationonly when either of the oordinates of the two eletrons are greater than someradius, R0. The ECS transformation that does this was invented and investi-gated in the ontext of eletron sattering resonanes with only one eletronin the ontinuum [18,19℄; its adaptation to the (e,2e) problem is shown inFig.(1). Spei�ally, under ECS, the radial oordinates of the eletrons aretransformed under the mapping:r ! (r r < R0;R0 + (r �R0)ei� r � R0: (8)Beause 	s ontains only outgoing waves, whih deay exponentially on theomplex part of the exterior saling ontour, Eq.(7) an be solved by applyingonly the boundary ondition that 	s vanish at large distanes. On the realpart of the ontour, 	s is the orret physial wave funtion from whih allsattering information an, in priniple, be extrated, provided it is extratedin the region of real oordinates.There is one �nal subtlety: beause Eq.(6) ontains plane waves, whihdiverge under omplex saling, interation potentials must be trunated atlarge distanes, but only on the right hand side of Eq.(7) [20℄.
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Fig. 1. Left Panel: illustration of the ECS ontour rotated into the upper-half ofthe omplex r-plane beyond R0. Right Panel: Depition of exterior omplex salingfor two radial oordinates.3 Sattered-Wave Formalism - Options for Computingthe Wave FuntionThe method of exterior omplex saling and its appliations have been de-veloped in a series of papers [3{8,21{23℄, whih from the outset divided thesolution of the problem of eletron-impat ionization into two disrete steps:1. Compute the sattering wave funtion without reourse to the expliitthree-body asymptoti form by applying exterior omplex saling to thesolution of a disretized representation of the Shr�odinger equation.2. Extrat di�erential and total ionization ross setions from the wave fun-tion by either "interrogating" it to ompute the sattered ux, or usingit in an integral expression for the breakup amplitudes.It is worth noting that these two problems, namely the omputation ofthe sattered wave funtion and the subsequent extration of the satteringinformation, are only distint steps in approahes where the wave funtionis omputed by a method that is independent of the asymptoti mathingondition that de�nes the sattering amplitudes. In that sense, our approahis similar to time-dependent methods whih trak a wavepaket through theollision from initial to �nal states and then attempt to extrat ross setionsby analyzing the exiting wavepaket. It is also the ase with both approahesthat the extration step, while far from being the most omputationally in-tensive part of the overall alulation, presents many formal diÆulties, par-tiularly in the ase on multi-eletron targets, and is the subjet of muhurrent researh.



Collisional Breakup in Coulomb Systems 53.1 Time-Independent Approah - Linear EquationsTo solve the sattered wave Shr�odinger equation, Eq. (7), we must speifythe underlying representation. For all the ECS alulations to date, 	s is�rst expanded in oupled spherial harmonis of the angular oordinates ofthe two eletrons: YL0l1;l2(r̂1; r̂2)	s(r1; r2) = XL;l1;l2 	Ll1;l2(r1; r2)YL0l1;l2(r̂1; r̂2) (9)thereby allowing the onversion of Eq.(7), the driven Shr�odinger equation, toa set of oupled equations for the two-partile radial funtions, 	Ll1;l2(r1; r2):�E � Ĥl1(r1)� Ĥl2(r2)� Ll1l2(r1; r2)�Xl01;l02hl1l2jjl01l02iL Ll01;l02(r1; r2) = �Ll1l2(r1; r2) (10)where the radial oupling potentials, hl1l2jjl01l02iL, are obtained by takingmatrix elements of 1jr1�r2j between two oupled spherial harmonis [6℄. Theinhomogeneous terms, �Ll1l2 , arise from the partial-wave expansion of theright-hand side of Eq.(7)The set of oupled equations is onverted to a system of linear equationsby hoosing some disretization method for representing the exterior-saledradial funtions. In our earlier studies of e-H ionization, the oupled radialequations were solved on a omplex two-dimensional grid using seven-point�nite di�erene approximations to the seond derivatives. A typial alula-tion might have � 450 points in eah radial dimension, and for a given totalangular momentum, L, have of the order of 24 (l1; l2) angular momentumpairs. The time onsuming step of the alulation, now a modest omputa-tion on a massively parallel superomputer, is the solution of sparse linearequations of the order of �ve million. To aomplish this, we used an iter-ative algorithm spei�ally tailored to the problem at hand. The eigenvaluespetrum of a omplex-saled Hamiltonian is suh that no known iterativealgorithm will onverge to solution without pre-onditioning. Therefore, �nd-ing a suitable pre-onditioner for the oupled equations is a neessity. Theset of unoupled radial equations, de�ned by setting hl1l2jjl01l02iL = 0 for all(l01; l02) 6= (l1; l2) in Eq. (10), have numerial properties similar to the oupledequations, but require solving linear systems only as big as the total numberof radial grid points. We have found solutions of the unoupled equations,whih an be obtained by using a diret sparse solver [24℄, to be a suitablepre-onditioner for solving the oupled equations.The oupled equations an be solved using disretization shemes thatare more eÆient that high-order �nite di�erene. In our urrent e�orts, weuse a ombined �nite element and disrete variable representation (DVR),whih is the most eÆient numerial representation developed to date[25℄.
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Fig. 2. Real part of a representative radial funtion for eletron-hydrogen satteringat 17.6 eV inident energy. Vertial axis is Re(	) and the two horizontal axes arer1 and r2 with origins at the rear left orner. 	Ll1;l2(r1; r2) is shown for singlet spin,L = 2 and l1 = l2 = 1In that representation a DVR using Lobatto shape funtions is onstrutedinside eah �nite element. Continuity of the wave funtion is enfored at theboundaries of the �nite elements, and one of those boundaries is always hosento lie at R0. The �nite-element DVR representation of the one-dimensionalkineti energy, � 12�2=�r2, has a bloked struture, but the potentials, bothv(r) and V (ri; rj), are diagonal in the oordinates of eah eletron. Sinethe underlying grid points are onneted to a Gauss quadrature rule, thetotal number of points required is onsiderably smaller than what would berequired with �nite di�erene to ahieve the same level of auray.For the e-H problem, one of the many alulated radial funtions on-tributing to 	s is shown in Fig.(2). In that �gure one an see the outgoingux in the disrete, inelasti hannels going out near the axes, while the ion-ization ux goes out for large r1 and r2 in the strutures resembling ripplesfrom a pebble dropped in a pond.3.2 Time-Dependent Approah - Wavepaket PropagationA straightforwad extension of the method outlined in the previous setion to atwo-eletron target atom, for example to the ase of e-He ionization, would re-quire the solution of oupled linear equations in three radial dimensions. Themost troublesome aspet of suh an undertaking, aside from the omputer re-soures that would be required, is the fat that even the unoupled equationswould likely require an iterative method of solution and �nding a suitable



Collisional Breakup in Coulomb Systems 7pre-onditioner would be diÆult. In ontrast to time-independent methods,expliit time-dependent methods, whih involve propagating a wavepaket ona multi-dimensional grid, have saling properties that allow their appliationto three-eletron systems. We have reently desribed a step toward a om-plete algorithm for solving the three-eletron breakup problem by ombiningthe idea of time propagation with that of using exterior omplex saling tosolve a driven Shr�odinger equation [26℄.Exterior omplex saling had previously been explored as a method forsolving the time-dependent Shr�odinger equation [27,28℄. The ritial obser-vation in that work is that if the wave paket 	(r; t) ontains only outgoingwaves, then	(R(r); t) ���!r!1 0 (11)on the omplex ontour for all times, t. Sine the physial solution of thedriven Shr�odinger equation in Eq.(7) has only outgoing waves, that point isthe key to the time-dependent formulation of the ECS method for the presentproblem.Formally, the solution of Eq.(7) we seek is	s(r1; r2; : : : ) = G(+)(H �E)�0(r1; r2; : : : ); (12)with G(+) being the Green's funtion with outgoing wave boundary ondi-tions,G(+) = (E �H + i�)�1: (13)We an also write G(+) formally asG(+) = 1i Z 10 ei(E+i�)te�iHtdt: (14)Note that the r.h.s. of Eq.(7) satis�es(H �E)�0(r1; r2; : : : ) ����!ri!1 0 (15)beause �0 is asymptotially an eigenfuntion of H. In fat (H � E)�0 hasthe range of the interation potential. In general, therefore, we an de�ne asquare-integrable wave paket, �(r1; r2; : : : ; t), by�(r1; r2; : : : ; t) = e�iHt(H �E)�0(r1; r2; : : : ): (16)Now if we apply the exterior saling transformation to this equation andde�ne the exterior saled Hamiltonian by,H ! HECS = H(R(r1); R(r2); : : : ); (17)



8 T.N. Resigno and C.W. MCurdywhere the saling applies only to the radial oordinates, the wave paket thenbeomes�(R(r1); R(r2); : : : ; t) = e�iHECSt(HECS �E)��0(R(r1); R(r2); : : : ): (18)This paket has two important properties,�(R(r1); R(r2); : : : ; t) ����!ri!1 0; (19)and�(R(r1); R(r2); : : : ; t) ���!t!1 0; (20)Therefore we an write 	s simply as the Fourier transform of the the wavepaket	s = 1i Z 10 eiEt�(t)dt; (21)and the +i� in Eq.(14) is unneessary.Eq.(21) provides a numerial representation of 	s, provided we an prop-agate �(0) = (H � E)�0 on the ECS ontour in two or three dimensions. Innumerial experiments we have found that the lass of numerial propagatorsthat are unitary for hermitian Hamiltonians, i.e., before the ECS transfor-mation is made, are generally stable for the orresponding exterior saledHamiltonians. For example in one dimension it has been shown[28℄ that theCrank-Niolson propagator, for time step �t,e�iH�t = (1 + iH�t=2)�1(1� iH�t=2) + O((�t)3): (22)works well as does the two-dimensional version of this propagator.The motivation behind the time-dependent approah is the developmentof a method that sales favorably with partile number, so it should notinvolve solutions of linear equations representing multiple dimensions at eahtime step. In our urrent work, we are using a simple version of the splitoperator approah [29℄, in whih we �rst write,H = dXi=1H0(ri) + dXi>j=1 V (ri; rj); (23)where H0(r) is the one-body Hamiltonian and V (ri; rj) is the two-body in-teration potential, and then approximate the propagator by,e�iH�t � e�iPi>j V (ri;rj)�t=2h dYi=1 e�iH0(ri)�tie�iPi>j V (ri;rj)�t=2: (24)



Collisional Breakup in Coulomb Systems 9With either �nite-di�erene or DVR, the potentials are diagonal in the o-ordinates of eah eletron. The operators exp(�iH0(ri)�t) an be repre-sented by an N � N matrix, where N is the number of grid points inone dimension, that need be omputed only one. It is straightforward toshow [26℄ that, for a problem with d dimensions, the entire propagator re-quires O(2Nd) + O(dNd+1) operations per time step. The saling advantageof the time-dependent approah as outlined above is then that of Nd+1 versusN2d for the time-independent approah.4 Extration of Physial Cross SetionsWith the sattering wave funtion in hand we are faed with the problemof extrating the information it ontains about elasti, disrete inelasti andionization hannels. A omplete theoretial treatment of eletron-impat ion-ization must neessarily inlude a presription for alulating di�erential rosssetions that give detailed information about the energies and angles of eje-tion of both eletrons. Unlike the representation of the wave funtion in anordinary atomi lose-oupling alulation, its numerial representation inthis approah gives no immediate indiation of how to separate those ontri-butions.4.1 Flux-Operator ApproahThe �rst ECS alulations on eletron-impat ionization of hydrogen wereperformed by simply omputing a variant of the quantum mehanial uxthrough a surfae that lies within the volume of oordinate spae where bothoordinates are real. The ontinuum of ionization �nal states is desribed byux through a hypersphere of radius �0 in the limit �0 !1. To this end, wede�ne a generalized, dimensionless ux f(ion)�0f(ion)�0 (�; r̂1; r̂2) � Imhki� �r1r2	+ion(r1; r2)�? �dd� �r1r2	+ion(r1; r2)� i����=�0 (25)evaluated at a hyperradius �0. Sine the hyperspherial angle � parametrizesthe momentum distribution between the two eletrons as �0 ! 1, we anexpress the total ionization ross setion as an integral of f(ion)�0 , in the limit�0 !1, over � and the angular oordinates of both eletrons:�ion = 1k2i �=2Z0 Z4� Z4� f(ion)�0 (�; r̂1; r̂2) dr̂1dr̂2d� ��������0!1 (26)



10 T.N. Resigno and C.W. MCurdyThus, the �0 !1 limit of the ux leads diretly to a di�erential ross setionfor ionization. To ompute the sattered ux, we assemble 	+s and dd�	+s fromall its partial wave omponents:f�0(�; r̂1; r̂2) =i8>><>>:ki� XL0;l01;l02L;l1;l2 � L0l01l02�? dd� � Ll1l2� �YL00l01;l02(r̂1; r̂2)�? YL0l1;l2(r̂1; r̂2)9>>=>>;���������=�0(27)The ux operator approah, while oneptually straightforward, is om-putationally diÆult. For purely geometrial reasons, the alulation of theasymptoti ux an require alulations well beyond the range of the poten-tials, even in the ase of short-ranged interations. Indeed, by inserting theasymptoti form for 	+ion from Eq. (1) into Eq. (25) we �nd that the ionizationux approahes its asymptoti limit as 1� , i.e. for large �0f(ion)� (�; r̂1; r̂2) = f(ion)1 (�; r̂1; r̂2) +O� 1�0� (28)The alulated ux must therefore be numerially extrapolated to in�nite �0to obtain physial results.A more serious problem, evident in the plot of the radial wave funtionshown in Fig. (2), is that there are regions of spae (near the axes) where the\ionization wave" overlaps the disrete two-body hannels. The fat that thelatter ontaminate the ionization ux again fores one to employ grids largeenough to allow the physial region inhabited only by the ionization portion ofthe sattered wave to be distinguishable from the parts that desribe disretetwo-body hannels. The angular range in � subtended by the ux due to adisrete hannel is sin�1(�=�0) where � is the distane over whih the targetstate is appreiably di�erent from zero. Thus as �0 inreases, ontaminationof the ionization ux from disrete hannels is on�ned to smaller regionsof �. In the true �0 ! 1 limit the disrete hannels' ontributions to theux beome delta funtions at � = 0 and � = 90o and equality in Eq. (28)holds exept for in�nitesimally small regions near the edges. In pratie, theontamination of the ionization ux by disrete hannels on �nite grids limitsthe ux-extrapolation proedure in its ability to desribe ionization when asingle eletron arries most of the available energy. Our early alulations ofsingly di�erential ross setions(SDCS) [5℄ were limited to ases where oneeletron arried no more than about 75% of the total energy.The most detailed information about ionization is ontained in the so-alled triply di�erential ross setion(TDCS) whih measures the energy andangles of the two outgoing eletrons. The alulated TDCS for eletron-hydrogen ionization at 17.6eV inident energy is ompared with the absoluteexperimental measurements of R�oder et al. [30℄ in Fig.(3). The results areshown for the oplanar symmetri experimental geometry (whih means that
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sattering angle �1 (degrees)Fig. 4. TDCS for 25 eV inident energy. Normalization fator to onvert measuredvalues of R�oder et al. from arbitrary units is 0.16.4.2 Formal Rearrangement Theory and Sattering Amplitudesfor Three-Body BreakupWhile the straightforward evaluation of quantum mehanial ux has theappeal that it orresponds to the most basi formal de�nition of the rosssetions, it is not as eÆient, even for simple inelasti sattering, as thealulation of sattering amplitudes via matrix elements that depend onlyon the range of the interation potential. It is therefore advantageous, bothomputationally and theoretially, to onfront the dilema posed by the formaltheory in Eqs.(2-4).The question of how to formulate a proedure for extrating breakup am-plitudes from a wave funtion that is only known numerially on a �nite gridwas addressed in a series of reent papers [8,22,23℄. In the �rst of these stud-ies [22℄ we showed that, even in ases that involve only short-ranged poten-tials, some formally orret integral expressions for the breakup amplitudesan yield numerially unstable or poorly onvergent results. For example, theexpressionf = hp1;p2jVj	+i (29)where the �nal state is just a produt of plane waves, while providing a for-mally orret breakup amplitude for short-ranged potentials, was found to be



Collisional Breakup in Coulomb Systems 13numerially unstable. The instability an be traed to `free-free' overlap termsthat arise from disrete two-body hannels in the sattered wave funtion.On an in�nite grid, these terms are proportional to momentum onservingdelta funtions whih therefore ontribute nothing to the breakup amplitude,but on a �nite grid, they are a soure of numerial error. A pratial solutionwas found by using formal rearrangement to express the amplitude in termsof distorted waves. A series of formal manipulations, ombined with Green'stheorem, allows us to express the breakup amplitude as a surfae integral:f = 12 ZS(�(+)k1 �(+)k2 r	+s � 	+sr�(+)k1 �(+)k2 ) � dŜ (30)where the funtions �(+)k are distorted waves derived from the one-body termsin the interation potential [22℄.For Coulomb problems, the obvious extension is to employ Coulomb fun-tions as distorted waves in Eq. (30). This is, however, at odds with the formaltheory, whih states that the integral expression in Eq. (30) will have a di-vergent phase unless the Coulomb funtions are hosen with e�etive hargesthat satisfy Eq. (3). But the use of e�etive harges other than unity in theCoulomb funtions that de�ne the �nal state have the unfortunate propertyof destroying their orthogonality to the bound states of the hydrogen atom.We showed in ref. [23℄ that, on a �nite volume, the e�et of using Coulombfuntions with Z = 1 in omputing the ionization amplitudes is merely tointrodue an inonsequential overall phase that has no e�et on the rosssetion. It is the appliation of the integral formula, together with the ECSmethod, to ionization of hydrogen that has given the most aurate desrip-tion of the omplete dynamis to date [8℄ and whih does in fat \reduethe problem to pratial omputation". The TDCS results obtained from theintegral amplitudes, whih are also shown in Figs. (3) and (4), attest to theaaray of approah and also validate the fundamental orretness of theearlier ux extrapolation approah.The magnitudes and shapes of the singly di�erential ross setions at lowenergies give a partiularly ompelling demonstration of the ECS approahand make a satisfying onnetion with the semilassial theories that havebeen applied to the threshold behavior of the ionization proess. Fig.(5) om-pares the SDCS omputed by ux extrapolation and from integral amplitudesat inident energies from 15.4 eV (only 2 eV above the ionization threshold)to 54.4 eV. At lower energies the ux and integral formula methods for om-puting the SDCS disagree by as muh as 10%, beause the extrapolation ofthe ux beomes inreasingly diÆult as the energy is lowered. However nosuh diÆulty a�ets the integral expression in Eq.(30). At very low energiesthe SDCS is almost at and almost onstant as a funtion of inident energy.If it were at and onstant it would orrespond to a linear threshold law forthe total ross setion. In semilassial alulations at the Wannier geometrywith eletrons exiting in opposite diretions, Rost [32℄ predited qualitatively
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Collisional Breakup in Coulomb Systems 15the same energy. Double ionization is the (e,3e) proess in whih there arethree free eletrons in the �nal state.While we are still far from the goal of arrying out a fully ab initio treat-ment of eletron-impat ionization with a multi-eletron target, there havealready been a few proof-of-priniple demonstrations involving model prob-lems [33,26℄ that treat ionization of atomi targets with \two ative ele-trons". These preliminary studies have served to establish the fat that time-dependent approahes ertainly have the saling properties that allow theirappliation to three-eletron systems and signal the emergene of a new levelof sophistiation in ionization studies that will go beyond urrently avail-able methods that treat multi-eletron atoms with frozen-ore, one-eletronmodels.5.1 Asymptoti ProjetionThe extration of ionization ross setions from a numerial representationof the sattered wave on a �nite grid is substantially more diÆult witha multi-eletron target than with a one-eletron target. If one attempts toompute the ionization ross setions from an integral expression for thebreakup amplitudes, one �nds that in ontrast to the one-eletron targetase, the use of distorted waves alone is not suÆient to eliminate numerialinstabilities aused by disrete two-body hannel terms in the sattered waveand additional steps are required to obtain a viable formula. To see whythis is the ase, we need only onsider the asymptoti form of the satteredwave funtion for the ase of a two-eletron target at energies where bothsingle ionization and two-body hannels are open. For simpliity, we onsidera ase with no angular momentum. Asymptotially, there will be two-bodyterms in the sattered wave of the form fneiknr1�n(r2; r3), where �n(r2; r3)is a two-eletron target bound state and fn is the orresponding exitationamplitude, as well as an ionization term of the form fmioneik�12'm(r3)=p�12,where �12 =pr21 + r22 and 'm is a bound state of the residual ion.Now suppose we attempt to ompute the single ionization amplitude froman expressionf(k1; k2) = ZS��k1(r1)�k2 (r2)'n(r3)r +s(r1; r2; r3)� +s(r1; r2; r3)r�k1 (r1)�k2(r2)'n(r3)� � n̂dS (31)whih is an obvious generaliztion of Eq. (30) for a two-eletron target. Sinethere is no orthogonality relation between the distorted waves and the two-body bound states, the two-body terms in the sattered wave will again giverise to overlaps between free funtions in Eq. (31) whih render it numeriallyunstable. One way to remedy this is to �rst evaluate the two-body amplitudesfrom the formulafn = 2hsin(knr1)�n(r2; r3)jE � T � V1j	si; (32)



16 T.N. Resigno and C.W. MCurdysine there are no formal or numerial problems assoiated with evaluationof Eq. (32). We an then onstrut an \asymptotially projeted" satteredwave	projs = 	s �Xn (fn=kn)eiknr1�n(r2; r3); (33)whih removes the two-body hannels from the asymptoti sattered wave.If we use 	projs in Eq. (31), then there is in priniple no ontamination ofthe ionization amplitude from two-body hannels and the surfae integralextrats the ionization amplitude just as it does in the ase of a one-eletrontarget.When the ollision energy moves above the threshold for double ioniza-tion, the asymptoti sattered wave will also ontain a term proportional toeiK�=�, where � =pr21 + r22 + r23 and E = K2=2. This term will again ausediÆulties in the integral expression for the single ionization amplitude. For-tunately, the following integral an be used to ompute the amplitude fordouble ionization:fdoubleion (k1; k2; k3) = h�k1�k2�k3 jE � T � V1j	projs i; (34)where E = k21=2+ k22=2+ k23=2. If the distorted waves are hosen to be eigen-states of the one-body potential, then orthogonality between the distortedwaves and the one-body bound states 'm prevents the asymptoti single-ionization terms in 	projs from ausing any numerial problems. One anthen extend the de�nition of 	projs to inlude the double ionization term,	proj0s = 	s �Xn (fn=kn)eiknr1�n(r2; r3)� fdoubleion eiK�=�: (35)before using Eq. (31) to ompute the amplitudes for single ionization. By fol-lowing these steps, we an, in priniple, ompute all the sattering amplitudesof interest in the ase of a two-eletron target.We have tested these ideas in a model 3-eletron problem that involesonly exponentially bound one- and two-body potentials [26℄. The potentialstrengths were hosen so that the target `atom' and `ion' eah bind a singlestate, so the only hannels possible are elasti sattering and breakup. Thesattered waves were omputed on a three-dimensional radial grid by thetime-dependent version of ECS outlined in Se. 3.2. Fig. 6 plots the real partof the sattered wave for a �xed value of r3, before and after projetion ofthe elasti hannel, at an inident energy of 11 eV. The elasti two-bodyomponent, learly visible in the unprojeted sattered wave near the r1 andr2 axes, are e�etively removed by the asymptoti projetion sheme adopted.In Table 1, we show the elasti sattering ross setions together with thetotal ionization ross setions omputed by integrating the SDCS, the latteromputed from the asymptotially projeted sattered wave. The sum of thesetwo quantities is the total ross setion, whih an be evaluated independently
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18 T.N. Resigno and C.W. MCurdyfrom the optial theorem or from the total ux. The di�erene bedtweenthese quantities gives some indiation of the overall numerial auray ofthe results.6 ConlusionTheoretial and omputational advanes over the past few years have broughtus to a point where, for the simplest (e,2e) problems, it is aurate to say thatthe problem has been \redued to pratial omputation". For suh simplesystems, it will shortly beome a routine matter to omputationally exploreall aspets of ollisional breakup, inluding nonoplanar geometries togetherwith unequal energy sharing only a few volts above threshold. Dispite thisprogress, there are still questions to be answered, even in systems of only threeharged partiles. One notable problem yet to be solved is that of positronimpat ionization where ionization ompetes with positronium formation. Forollisional ionization of multi-eletron atoms, there are still many details tobe worked out and there are still open questions about what will ultimatelyprove to be the best way to extrat ionization ross setions from the wavefuntions one they are available. Despite the hallenges that remain, we areon�dent that benhmark alulations on the eletron-helium system, similarto those that now exist for the eletron-hydrogen system, will appear in thenext few years.AknowledgmentsThis work was performed under the auspies of the U.S. Department of En-ergy by the University of California Lawrene Berkeley National Laboratoryand Lawrene Livermore National Laboratory under ontrat numbers DE-AC03-76F00098 and W-7405-Eng-48, respetively. The work was supportedby the US DOE OÆe of Basi Energy Siene, Division of Chemial Si-enes, and omputations were performed on the omputers of the NationalEnergy Researh Sienti� Computing Center.Referenes1. R. K. Peterkop, Opt. Spetros. 13, 87 (1962).2. M. R. H. Rudge and M. J. Seaton, Pro. Roy. So. A 283, 262 (1965).3. C. W. MCurdy, T. N. Resigno, and D. Byrum, Phys. Rev. A 56, 1958 (1997).4. C. W. MCurdy and T. N. Resigno, Phys. Rev. A 56, R4369 (1997).5. T. N. Resigno, M. Baertshy, W. A. Isaas, and C. W. MCurdy, Siene 286,2474 (1999).6. M. Baertshy, T. N. Resigno, W. A. Isaas, X. Li, and C. W. MCurdy, Phys.Rev. A 63, 022712 (2000).
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